
Package: snfa (via r-universe)
August 28, 2024

Title Smooth Non-Parametric Frontier Analysis

Version 0.0.1.9000

Description Fitting of non-parametric production frontiers for use in
efficiency analysis. Methods are provided for both a smooth
analogue of Data Envelopment Analysis (DEA) and a
non-parametric analogue of Stochastic Frontier Analysis (SFA).
Frontiers are constructed for multiple inputs and a single
output using constrained kernel smoothing as in Racine et al.
(2009), which allow for the imposition of monotonicity and
concavity constraints on the estimated frontier.

Maintainer Taylor McKenzie <tkmckenzie@gmail.com>

Depends R (>= 3.5.0)

Imports abind (>= 1.4.5), prodlim (>= 2018.4.18), quadprog (>= 1.5.5),
rootSolve (>= 1.7)

Suggests ggplot2 (>= 3.1.0), knitr (>= 1.20), lpSolve (>= 5.6.13),
Rdpack (>= 0.10.1), rmarkdown (>= 1.10)

VignetteBuilder knitr

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

RdMacros Rdpack

Repository https://tkmckenzie.r-universe.dev

RemoteUrl https://github.com/tkmckenzie/snfa

RemoteRef HEAD

RemoteSha 457097e7f24abd87c04c4f4851f5bb69a46632ac

Contents
allocative.efficiency . 2

1

2 allocative.efficiency

dea . 4
fit.boundary . 6
fit.mean . 9
fit.sf . 12
H.inv.select . 14
panel.production . 16
reflect.data . 17
technical.efficiency.change . 18
univariate . 20
USMacro . 20

Index 22

allocative.efficiency Allocative efficiency estimation

Description

Fits frontier to data and estimates technical and allocative efficiency

Usage

allocative.efficiency(X, y, X.price, y.price, X.constrained = NA,
H.inv = NA, H.mult = 1, model = "br", method = "u",
scale.constraints = TRUE)

Arguments

X Matrix of inputs

y Vector of outputs

X.price Matrix of input prices

y.price Vector of output prices

X.constrained Matrix of inputs where constraints apply

H.inv Inverse of the smoothing matrix (must be positive definite); defaults to rule of
thumb

H.mult Scaling factor for rule of thumb smoothing matrix

model Type of frontier to use; "br" for boundary regression, "sf" for stochastic frontier

method Constraints to apply; "u" for unconstrained, "m" for monotonically increasing,
and "mc" for monotonically increasing and concave

scale.constraints

Boolean, whether to scale constraints by their average value, can help with con-
vergence

allocative.efficiency 3

Details

This function estimates allocative inefficiency using the methodology in McKenzie (2018). The
estimation process is a non-parametric analogue of Schmidt and Lovell (1979). First, the frontier is
fit using either a boundary regression or stochastic frontier as in Racine et al. (2009), from which
technical efficiency is estimated. Then, gradients and price ratios are computed for each observation
and compared to determine the extent of misallocation. Specifically, log-overallocation is computed
as

log

(
wj

i

pi

)
− log

(
ϕi

∂f(xi)

∂xj

)
,

where ϕi is the efficiency of observation i, ∂f(xi)/∂x
j is the marginal productivity of input j at

observation i, wj
i is the cost of input j for observation i, and pi is the price of output for observation

i.

Value

Returns a list with the following elements

y.fit Estimated value of the frontier at X.fit

gradient.fit Estimated gradient of the frontier at X.fit
technical.efficiency

Estimated technical efficiency
log.overallocation

Estimated log-overallocation of each input for each observation

X.eval Matrix of inputs used for fitting

X.constrained Matrix of inputs where constraints apply

H.inv Inverse smoothing matrix used in fitting

method Method used to fit frontier

scaling.factor Factor by which constraints are multiplied before quadratic programming

References

Aigner D, Lovell CK, Schmidt P (1977). “Formulation and estimation of stochastic frontier pro-
duction function models.” Journal of econometrics, 6(1), 21–37.

McKenzie T (2018). “Semi-Parametric Estimation of Allocative Inefficiency Using Smooth Non-
Parametric Frontier Analysis.” Working Paper.

Racine JEFFREYS, Parmeter CHRISTOPHERF, Du P (2009). “Constrained nonparametric ker-
nel regression: Estimation and inference.” Working paper.

Schmidt P, Lovell CK (1979). “Estimating technical and allocative inefficiency relative to stochastic
production and cost frontiers.” Journal of econometrics, 9(3), 343–366.

4 dea

Examples

data(USMacro)

USMacro <- USMacro[complete.cases(USMacro),]

Extract data
X <- as.matrix(USMacro[,c("K", "L")])
y <- USMacro$Y

X.price <- as.matrix(USMacro[,c("K.price", "L.price")])
y.price <- rep(1e9, nrow(USMacro)) #Price of $1 billion of output is $1 billion

Run model
efficiency.model <- allocative.efficiency(X, y,

X.price, y.price,
X.constrained = X,
model = "br",
method = "mc")

Plot technical/allocative efficiency over time
library(ggplot2)

technical.df <- data.frame(Year = USMacro$Year,
Efficiency = efficiency.model$technical.efficiency)

ggplot(technical.df, aes(Year, Efficiency)) +
geom_line()

allocative.df <- data.frame(Year = rep(USMacro$Year, times = 2),
log.overallocation = c(efficiency.model$log.overallocation[,1],

efficiency.model$log.overallocation[,2]),
Variable = rep(c("K", "L"), each = nrow(USMacro)))

ggplot(allocative.df, aes(Year, log.overallocation)) +
geom_line(aes(color = Variable))

Estimate average overallocation across sample period
lm.model <- lm(log.overallocation ~ 0 + Variable, allocative.df)
summary(lm.model)

dea Data envelopment analysis

Description

Basic data envelopment analysis to replace rDEA::dea due to difficulties installing rDEA on travis-
ci

dea 5

Usage

dea(XREF, YREF, X, Y, model = "output", RTS = "variable")

Arguments

XREF Matrix of inputs for observations used for constructing the frontier

YREF Matrix of outputs for observations used for constructing the frontier

X Matrix of inputs for observations, for which DEA scores are estimated

Y Matrix of outputs for observations, for which DEA scores are estimated

model Orientation of the model; must be "input" or "output"

RTS Returns-to-scale for the model; must be "constant", "non-increasing" or "vari-
able"

Details

This function estimates efficiency using data envelopment analysis. The linear program is con-
structed as in Fare et al. (1985) and optimized using lpSolve::lp. The function was built to swap
with rDEA::dea because installation of rDEA presented problems for travis-ci, due to difficulties
installing glpk. Should installation of rDEA on travis-ci become possible, this function will be
removed.

Value

Returns a list with the following components

thetaOpt A vector of efficiency estimates, in [0, 1] interval

lambda A matrix of constraint coefficients

lambda_sum A vector of sum of lambdas; lambda_sum = 1 for variable RTS, lambda_sum
<= for non-increasing RTS

model Orientation of the model

RTS Returns-to-scale for the model

References

Fare R, Grosskopf S, Lovell CA (1985). The Measurement of Efficiency in Production. Kluwer
Academic Publishers.

Examples

data(univariate)

dea.fit <- dea(univariate$x, univariate$y,
univariate$x, univariate$y,
model = "output",
RTS = "variable")

univariate$frontier <- univariate$y / dea.fit$thetaOpt

6 fit.boundary

Plot technical/allocative efficiency over time
library(ggplot2)

ggplot(univariate, aes(x, y)) +
geom_point() +
geom_line(aes(y = frontier), color = "red")

fit.boundary Multivariate smooth boundary fitting with additional constraints

Description

Fits boundary of data with kernel smoothing, imposing monotonicity and/or concavity constraints.

Usage

fit.boundary(X.eval, y.eval, X.bounded, y.bounded, X.constrained = NA,
X.fit = NA, y.fit.observed = NA, H.inv = NA, H.mult = 1,
method = "u", scale.constraints = TRUE)

Arguments

X.eval Matrix of inputs used for fitting

y.eval Vector of outputs used for fitting

X.bounded Matrix of inputs where bounding constraints apply

y.bounded Vector of outputs where bounding constraints apply

X.constrained Matrix of inputs where monotonicity/concavity constraints apply

X.fit Matrix of inputs where curve is fit; defaults to X.constrained

y.fit.observed Vector of outputs corresponding to observations in X.fit; used for efficiency cal-
culation

H.inv Inverse of the smoothing matrix (must be positive definite); defaults to rule of
thumb

H.mult Scaling factor for rule of thumb smoothing matrix

method Constraints to apply; "u" for unconstrained, "m" for monotonically increasing,
and "mc" for monotonically increasing and concave

scale.constraints

Boolean, whether to scale constraints by their average value, can help with con-
vergence

fit.boundary 7

Details

This method fits a smooth boundary of the data (with all data points below the boundary) while
imposing specified monotonicity and concavity constraints. The procedure is derived from Racine et
al. (2009), which develops kernel smoothing methods with bounding, monotonicity and concavity
constraints. Specifically, the smoothing procedure involves finding optimal weights for a Nadaraya-
Watson estimator of the form

ŷ = m(x) =

N∑
i=1

piA(x, xi)yi,

where x are inputs, y are outputs, p are weights, subscripts index observations, and

A(x, xi) =
K(x, xi)∑N

h=1 K(x, xh)

for a kernel K. This method uses a multivariate normal kernel of the form

K(x, xh) = exp

(
−1

2
(x− xh)

′H−1(x− xh)

)
,

where H is a bandwidth matrix. Bandwidth selection is performed via Silverman’s (1986) rule-of-
thumb, in the function H.inv.select.

Optimal weights p̂ are selected by solving the quadratic programming problem

min
p

− 1′p+
1

2
p′p.

This method always imposes bounding constraints as specified points, given by

m(xi)− yi =

N∑
h=1

phA(xi, xh)yh − yi ≥ 0 ∀i.

Additionally, monotonicity constraints of the following form can be imposed at specified points:

∂m(x)

∂xj
=

N∑
h=1

ph
∂A(x, xh)

∂xj
yh ≥ 0 ∀x, j,

where superscripts index inputs. Finally concavity constraints of the following form can also be
imposed using Afriat’s (1967) conditions:

m(x)−m(z) ≤ ∇xm(z) · (x− z) ∀x, z.

The gradient of the frontier at a point x is given by

∇xm(x) =

N∑
i=1

p̂i∇xA(x, xi)yi,

where p̂i are estimated weights.

8 fit.boundary

Value

Returns a list with the following elements

y.fit Estimated value of the frontier at X.fit

gradient.fit Estimated gradient of the frontier at X.fit

efficiency Estimated efficiencies of y.fit.observed

solution Boolean; TRUE if frontier successfully estimated

X.eval Matrix of inputs used for fitting

X.constrained Matrix of inputs where monotonicity/concavity constraints apply

X.fit Matrix of inputs where curve is fit

H.inv Inverse smoothing matrix used in fitting

method Method used to fit frontier

scaling.factor Factor by which constraints are multiplied before quadratic programming

References

Racine JEFFREYS, Parmeter CHRISTOPHERF, Du P (2009). “Constrained nonparametric kernel
regression: Estimation and inference.” Working paper.

Examples

data(univariate)

Set up data for fitting
X <- as.matrix(univariate$x)
y <- univariate$y

N.fit <- 100
X.fit <- as.matrix(seq(min(X), max(X), length.out = N.fit))

Reflect data for fitting
reflected.data <- reflect.data(X, y)
X.eval <- reflected.data$X
y.eval <- reflected.data$y

Fit frontiers
frontier.u <- fit.boundary(X.eval, y.eval,

X.bounded = X, y.bounded = y,
X.constrained = X.fit,
X.fit = X.fit,
method = "u")

frontier.m <- fit.boundary(X.eval, y.eval,
X.bounded = X, y.bounded = y,
X.constrained = X.fit,
X.fit = X.fit,
method = "m")

fit.mean 9

frontier.mc <- fit.boundary(X.eval, y.eval,
X.bounded = X, y.bounded = y,
X.constrained = X.fit,
X.fit = X.fit,
method = "mc")

Plot frontier
library(ggplot2)

frontier.df <- data.frame(x = rep(X.fit, times = 3),
y = c(frontier.u$y.fit, frontier.m$y.fit, frontier.mc$y.fit),
model = rep(c("u", "m", "mc"), each = N.fit))

ggplot(univariate, aes(x, y)) +
geom_point() +
geom_line(data = frontier.df, aes(color = model))

Plot slopes
slope.df <- data.frame(x = rep(X.fit, times = 3),

slope = c(frontier.u$gradient.fit,
frontier.m$gradient.fit,
frontier.mc$gradient.fit),

model = rep(c("u", "m", "mc"), each = N.fit))

ggplot(slope.df, aes(x, slope)) +
geom_line(aes(color = model))

fit.mean Kernel smoothing with additional constraints

Description

Fits conditional mean of data with kernel smoothing, imposing monotonicity and/or concavity con-
straints.

Usage

fit.mean(X.eval, y.eval, X.constrained = NA, X.fit = NA, H.inv = NA,
H.mult = 1, method = "u", scale.constraints = TRUE)

Arguments

X.eval Matrix of inputs used for fitting

y.eval Vector of outputs used for fitting

X.constrained Matrix of inputs where constraints apply

X.fit Matrix of inputs where curve is fit; defaults to X.constrained

H.inv Inverse of the smoothing matrix (must be positive definite); defaults to rule of
thumb

10 fit.mean

H.mult Scaling factor for rule of thumb smoothing matrix

method Constraints to apply; "u" for unconstrained, "m" for monotonically increasing,
and "mc" for monotonically increasing and concave

scale.constraints

Boolean, whether to scale constraints by their average value, can help with con-
vergence

Details

This method uses kernel smoothing to fit the mean of the data while imposing specified monotonic-
ity and concavity constraints. The procedure is derived from Racine et al. (2009), which develops
kernel smoothing methods with bounding, monotonicity and concavity constraints. Specifically,
the smoothing procedure involves finding optimal weights for a Nadaraya-Watson estimator of the
form

ŷ = m(x) =

N∑
i=1

piA(x, xi)yi,

where x are inputs, y are outputs, p are weights, subscripts index observations, and

A(x, xi) =
K(x, xi)∑N

h=1 K(x, xh)

for a kernel K. This method uses a multivariate normal kernel of the form

K(x, xh) = exp

(
−1

2
(x− xh)

′H−1(x− xh)

)
,

where H is a bandwidth matrix. Bandwidth selection is performed via Silverman’s (1986) rule-of-
thumb, in the function H.inv.select.

Optimal weights p̂ are selected by solving the quadratic programming problem

min
p

− 1′p+
1

2
p′p.

Monotonicity constraints of the following form can be imposed at specified points:

∂m(x)

∂xj
=

N∑
h=1

ph
∂A(x, xh)

∂xj
yh ≥ 0 ∀x, j,

where superscripts index inputs. Finally concavity constraints of the following form can also be
imposed using Afriat’s (1967) conditions:

m(x)−m(z) ≤ ∇xm(z) · (x− z) ∀x, z.

The gradient of the estimated curve at a point x is given by

fit.mean 11

∇xm(x) =

N∑
i=1

p̂i∇xA(x, xi)yi,

where p̂i are estimated weights.

Value

Returns a list with the following elements

y.fit Estimated value of the frontier at X.fit

gradient.fit Estimated gradient of the frontier at X.fit

solution Boolean; TRUE if frontier successfully estimated

X.eval Matrix of inputs used for fitting

X.constrained Matrix of inputs where constraints apply

X.fit Matrix of inputs where curve is fit

H.inv Inverse smoothing matrix used in fitting

method Method used to fit frontier

scaling.factor Factor by which constraints are multiplied before quadratic programming

References

Racine JEFFREYS, Parmeter CHRISTOPHERF, Du P (2009). “Constrained nonparametric kernel
regression: Estimation and inference.” Working paper.

Examples

data(USMacro)

USMacro <- USMacro[complete.cases(USMacro),]

Extract data
X <- as.matrix(USMacro[,c("K", "L")])
y <- USMacro$Y

Reflect data for fitting
reflected.data <- reflect.data(X, y)
X.eval <- reflected.data$X
y.eval <- reflected.data$y

Fit frontier
fit.mc <- fit.mean(X.eval, y.eval,

X.constrained = X,
X.fit = X,
method = "mc")

Plot input productivities over time
library(ggplot2)
plot.df <- data.frame(Year = rep(USMacro$Year, times = 2),

12 fit.sf

Elasticity = c(fit.mc$gradient.fit[,1] * X[,1] / y,
fit.mc$gradient.fit[,2] * X[,2] / y),

Variable = rep(c("Capital", "Labor"), each = nrow(USMacro)))

ggplot(plot.df, aes(Year, Elasticity)) +
geom_line() +
facet_grid(Variable ~ ., scales = "free_y")

fit.sf Non-parametric stochastic frontier

Description

Fits stochastic frontier of data with kernel smoothing, imposing monotonicity and/or concavity
constraints.

Usage

fit.sf(X, y, X.constrained = NA, H.inv = NA, H.mult = 1,
method = "u", scale.constraints = TRUE)

Arguments

X Matrix of inputs

y Vector of outputs

X.constrained Matrix of inputs where constraints apply

H.inv Inverse of the smoothing matrix (must be positive definite); defaults to rule of
thumb

H.mult Scaling factor for rule of thumb smoothing matrix

method Constraints to apply; "u" for unconstrained, "m" for monotonically increasing,
and "mc" for monotonically increasing and concave

scale.constraints

Boolean, whether to scale constraints by their average value, can help with con-
vergence

Details

This method fits non-parametric stochastic frontier models. The data-generating process is assumed
to be of the form

ln yi = ln f(xi) + vi − ui,

where yi is the ith observation of output, f is a continuous function, xi is the ith observation of
input, vi is a normally-distributed error term (vi ∼ N(0, σ2

v)), and ui is a normally-distributed error

fit.sf 13

term truncated below at zero (ui ∼ N+(0, σu)). Aigner et al. developed methods to decompose
εi = vi − ui into its basic components.

This procedure first fits the mean of the data using fit.mean, producing estimates of output ŷ.
Log-proportional errors are calculated as

εi = ln(yi/ŷi).

Following Aigner et al. (1977), parameters of one- and two-sided error distributions are estimated
via maximum likelihood. First,

σ̂2 =
1

N

N∑
i=1

ε2i .

Then, λ̂ is estimated by solving

1

σ̂2

N∑
i=1

εiŷi +
λ̂

σ̂

N∑
i=1

f∗
i

1− F ∗
i

yi = 0,

where f∗
i and F ∗

i are standard normal density and distribution function, respectively, evaluated at
εiλ̂σ̂

−1. Parameters of the one- and two-sided distributions are found by solving the identities

σ2 = σ2
u + σ2

v

λ =
σu

σv
.

Mean efficiency over the sample is given by

exp

(
−
√
2√
π

)
σu,

and modal efficiency for each observation is given by

−ε(σ2
u/σ

2).

Value

Returns a list with the following elements

y.fit Estimated value of the frontier at X.fit

gradient.fit Estimated gradient of the frontier at X.fit
mean.efficiency

Average efficiency for X, y as a whole
mode.efficiency

Modal efficiencies for each observation in X, y

X.eval Matrix of inputs used for fitting

14 H.inv.select

X.constrained Matrix of inputs where constraints apply

X.fit Matrix of inputs where curve is fit

H.inv Inverse smoothing matrix used in fitting

method Method used to fit frontier

scaling.factor Factor by which constraints are multiplied before quadratic programming

References

Aigner D, Lovell CK, Schmidt P (1977). “Formulation and estimation of stochastic frontier pro-
duction function models.” Journal of econometrics, 6(1), 21–37.

Racine JEFFREYS, Parmeter CHRISTOPHERF, Du P (2009). “Constrained nonparametric ker-
nel regression: Estimation and inference.” Working paper.

Examples

data(USMacro)

USMacro <- USMacro[complete.cases(USMacro),]

Extract data
X <- as.matrix(USMacro[,c("K", "L")])
y <- USMacro$Y

Fit frontier
fit.sf <- fit.sf(X, y,

X.constrained = X,
method = "mc")

print(fit.sf$mean.efficiency)
[1] 0.9772484

Plot efficiency over time
library(ggplot2)

plot.df <- data.frame(Year = USMacro$Year,
Efficiency = fit.sf$mode.efficiency)

ggplot(plot.df, aes(Year, Efficiency)) +
geom_line()

H.inv.select Bandwidth matrix selection

Description

Computes inverse of bandwidth matrix using rule-of-thumb from Silverman (1986).

H.inv.select 15

Usage

H.inv.select(X, H.mult = 1)

Arguments

X Matrix of inputs

H.mult Scaling factor for rule-of-thumb smoothing matrix

Details

This method performs selection of (inverse) multivariate bandwidth matrices using Silverman’s
(1986) rule-of-thumb. Specifically, Silverman recommends setting the bandwidth matrix to

H
1/2
jj =

(
4

M + 2

)1/(M+4)

×N−1/(M+4) × sd(xj) for j = 1, ...,M

Hab = 0 for a ̸= b

where M is the number of inputs, N is the number of observations, and sd(xj) is the sample
standard deviation of input j.

Value

Returns inverse bandwidth matrix

References

Silverman BW (1986). Density estimation for statistics and data analysis, volume 26. CRC press.

Examples

data(USMacro)

USMacro <- USMacro[complete.cases(USMacro),]

Extract data
X <- as.matrix(USMacro[,c("K", "L")])

Generate bandwidth matrix
print(H.inv.select(X))
[,1] [,2]
[1,] 3.642704e-08 0.000000e+00
[2,] 0.000000e+00 1.215789e-08

16 panel.production

panel.production Randomly generated panel of production data

Description

A dataset for illustrating technical and efficiency changes using smooth non-parametric frontiers.

Usage

panel.production

Format

A data frame with 200 observations of six variables.

Firm Firm identifier

Year Year of observation

X.1 Input 1

X.2 Input 2

X.3 Input 3

y Output

Details

Generated with the following code:

set.seed(100)

num.firms <- 20
num.inputs <- 3
num.years <- 10

beta <- runif(num.inputs, 0, 1)
TFP.trend = 0.25
TFP <- cumsum(rnorm(num.years)) + TFP.trend * (1:num.years)

sd.measurement <- 0.05
sd.inefficiency <- 0.01

f <- function(X){
return(TFP + X

}
gen.firm.data <- function(i){
X = matrix(runif(num.years * num.inputs, 1, 10), ncol = num.inputs)
y = f(X) +
rnorm(num.years, sd = sd.measurement) -

reflect.data 17

abs(rnorm(num.years, sd = sd.inefficiency))
firm.df <- data.frame(Firm = i,

Year = 1:num.years,
X = exp(X),
y = exp(y))

}

panel.production = Reduce(rbind, lapply(1:num.firms, gen.firm.data))
panel.production$Firm = as.factor(panel.production$Firm)

reflect.data Data reflection for kernel smoothing

Description

This function reflects data below minimum and above maximum for use in reducing endpoint bias
in kernel smoothing.

Usage

reflect.data(X, y)

Arguments

X Matrix of inputs

y Vector of outputs

Value

Returns a list with the following elements

X.reflected Reflected values of X

y.reflected Reflected values of y

Examples

data(univariate)

Extract data
X <- as.matrix(univariate$x)
y <- univariate$y

Reflect data
reflected.data <- reflect.data(X, y)

X.reflected <- reflected.data$X
y.reflected <- reflected.data$y

18 technical.efficiency.change

Plot
library(ggplot2)

plot.df <- data.frame(X = X.reflected,
y = y.reflected,
data = rep(c("reflected", "actual", "reflected"), each = nrow(X)))

ggplot(plot.df, aes(X, y)) +
geom_point(aes(color = data))

technical.efficiency.change

Technical and efficiency change estimation

Description

Estimates technical and efficiency change using SNFA

Usage

technical.efficiency.change(df, input.var.names, output.var.name,
firm.var.name, time.var.name, method = "u")

Arguments

df Data frame with variables used in estimation
input.var.names

Names of input variables; must appear in df
output.var.name

Name of output variable; must appear in df

firm.var.name Name of firm variable; must appear in df

time.var.name Name of time variable; must appear in df

method Constraints to apply; "u" for unconstrained, "m" for monotonically increasing,
and "mc" for monotonically increasing and concave

Details

This function decomposes change in productivity into efficiency and technical change, as in Fare
et al. (1994), using smooth non-parametric frontier analysis. Denoting Ds(xt, yt) as the efficiency
of the production plan in year t relative to the production frontier in year s, efficiency change for a
given firm in year t is calculated as

Dt+1(xt+1, yt+1)

Dt(xt, yt)
,

and technical change is given by

technical.efficiency.change 19

(
Dt(xt+1, yt+1)

Dt+1(xt+1, yt+1)
× Dt(xt, yt)

Dt+1(xt, yt)

)1/2

.

Value

Returns a data.frame with the following columns

firm.var.name Column of firm name data

time.var.name Column of time period data

efficiency.change

Average annual efficiency change since the previous period in data

technical.change

Average annual technical change since the previous period in data

productivity.change

Average annual productivity change since the previous period in data

References

Fare R, Grosskopf S, Norris M, Zhang Z (1994). “Productivity Growth, Technical Progress, and
Efficiency Change in Industrialized Countries.” The American Economic Review, 84(1), 66-83.

Examples

data(panel.production)

results.df <- technical.efficiency.change(df = panel.production,
input.var.names = c("X.1", "X.2", "X.3"),
output.var.name = "y",
firm.var.name = "Firm",
time.var.name = "Year")

Plot changes over time by firm
library(ggplot2)

ggplot(results.df, aes(Year, technical.change)) +
geom_line(aes(color = Firm))

ggplot(results.df, aes(Year, efficiency.change)) +
geom_line(aes(color = Firm))

ggplot(results.df, aes(Year, productivity.change)) +
geom_line(aes(color = Firm))

20 USMacro

univariate Randomly generated univariate data

Description

A dataset for illustrating univariate non-parametric boundary regressions and various constraints.

Usage

univariate

Format

A data frame with 50 observations of two variables.

x Input

y Output

Details

Generated with the following code:

set.seed(100)

N <- 50
x <- runif(N, 10, 100)
y <- sapply(x, function(x) 500 * x^0.25 -

dnorm(x, mean = 70, sd = 10) * 8000) -
abs(rnorm(N, sd = 20))

y <- y - min(y) + 10
df <- data.frame(x, y)

USMacro US Macroeconomic Data

Description

A dataset of real output, labor force, capital stock, wages, and interest rates for the U.S. between
1929 and 2014, as available. All nominal values converted to 2010 U.S. dollars using GDP price
deflator.

Usage

USMacro

USMacro 21

Format

A data frame with 89 observations of four variables.

Year Year

Y Real GDP, in billions of dollars

K Capital stock, in billions of dollars

K.price Annual cost of $1 billion of capital, using 10-year treasury

L Labor force, in thousands of people

L.price Annual wage for one thousand people

Source

https://fred.stlouisfed.org/

https://fred.stlouisfed.org/

Index

∗ datasets
panel.production, 16
univariate, 20
USMacro, 20

allocative.efficiency, 2

dea, 4

fit.boundary, 6
fit.mean, 9
fit.sf, 12

H.inv.select, 14

panel.production, 16

reflect.data, 17

technical.efficiency.change, 18

univariate, 20
USMacro, 20

22

	allocative.efficiency
	dea
	fit.boundary
	fit.mean
	fit.sf
	H.inv.select
	panel.production
	reflect.data
	technical.efficiency.change
	univariate
	USMacro
	Index

